呼出形式 | 説明 | 備考 |
y = _VML.Add(y,x1,x2) | y[i] = x1[i] + x2[i] | |
y = _VML.Sub(y,x1,x2) | y[i] = x1[i] - x2[i] | |
y = _VML.Mul(y,x1,x2) | y[i] = x1[i] * x2[i] | |
y = _VML.Div(y,x1,x2) | y[i] = x1[i] / x2[i] | |
y = _VML.Sqr(y,x) | y[i] = x[i] * x[i] | |
y = _VML.MulByConj(y,x1,x2) | y[i] = x1[i] * Complex.Conjugate(x2[i]) | Complex のみ |
y = _VML.Conjugate(y,x) | y[i] = Complex.Conjugate(x[i]) | Complex のみ |
y = _VML.Abs(y,x) | y[i] = |x[i]| | double のみ |
y = _VML.Inv(y,x) | y[i] = 1.0/x[i] | double のみ |
y = _VML.LinearFrac(y,x1,a,b,x2,c,d) | y[i] = (a*x1[i]+b)/(c*x2[i]+d) | double のみ、a,b,c,dはスカラー |
y = _VML.Sqrt(y,x) | y[i] = (x[i])1/2 | |
y = _VML.InvSqrt(y,x) | y[i] = (x[i])-1/2 | double のみ |
y = _VML.Cbrt(y,x) | y[i] = (x[i])1/3 | double のみ |
y = _VML.InvCbrt(y,x) | y[i] = (x[i])-1/3 | double のみ |
y = _VML.Pow2o3(y,x) | y[i] = (x[i])2/3 | double のみ |
y = _VML.Pow3o2(y,x) | y[i] = (x[i])3/2 | double のみ |
y = _VML.Pow(y,x1,x2) | y[i] = (x1[i])x2[i] | |
y = _VML.Powx(y,x,b) | y[i] = (x1[i])b | b はスカラー |
y = _VML.Hypot(y,x1,x2) | y[i] = (x1[i]2+x2[i]2)1/2 | double のみ |
y = _VML.Exp(y,x) | y[i] = ex[i] | |
y = _VML.Log(y,x) | y[i] = Loge(x[i]) | |
y = _VML.Log10(y,x) | y[i] = Log10(x[i]) | |
y = _VML.Cos(y,x) | y[i] = Cos(x[i]) | |
y = _VML.Sin(y,x) | y[i] = Sin(x[i]) | |
y = _VML.Tan(y,x) | y[i] = Tan(x[i]) | |
y = _VML.CiS(y,x) | y[i] = Cos(x[i])+i*Sin(X[i]) | iは虚数単位。y はComplex、x は double |
y = _VML.Acos(y,x) | y[i] = Cos-1(x[i]) | |
y = _VML.Asin(y,x) | y[i] = Sin-1(x[i]) | |
y = _VML.Atan(y,x) | y[i] = Tan-1(x[i]) | |
y = _VML.Atan2(y,x1,x2) | y[i] = Tan-1(x1[i]/x2[i]) | double のみ |
y = _VML.Cosh(y,x) | y[i] = (ex[i]+e-x[i])/2 | 双曲線余弦関数 |
y = _VML.Sinh(y,x) | y[i] = (ex[i]+e-x[i])/2 | 双曲線正弦関数 |
y = _VML.Tanh(y,x) | y[i] = Sinh(x[i])/Cosh(x[i]) | 双曲線正接関数 |
y = _VML.Acosh(y,x) | y[i] = Acosh-1(x[i]) | |
y = _VML.Asinh(y,x) | y[i] = Asinh-1(x[i]) | |
y = _VML.Atanh(y,x) | y[i] = Atanh-1(x[i]) | |
y = _VML.Erf(y,x) | y[i] = (2/π1/2))∫0x[i]e-t*tdt | 誤差関数、double のみ |
y = _VML.ErfInv(y,x) | y[i] = Erf-1(x[i]) | 逆誤差関数、double のみ |
y = _VML.Erfc(y,x) | y[i] = 1-Erf(x[i]) | 相補誤差関数、double のみ |
y = _VML.ErfcInv(y,x) | y[i] = Erfc-1(x[i]) | 逆相補誤差関数、double のみ |
y = _VML.CdfNorm(y,x) | y[i] = 1/(2π)1/2∫-∞x[i]e-t*t/2dt | 累積正規分布関数、double のみ |
y = _VML.CdfNormInv(y,x) | y[i] = CdfNorm-1(x[i]) | 逆累積正規分布関数、double のみ |
y = _VML.Gamma(y,x) | y[i] = ガンマ関数値(x[i]) | double のみ |
y = _VML.Floor(y,x) | y[i] = 負の無限方向に切り捨て(x[i]) | 複素数は実数部と虚数部に適用されます。 |
y = _VML.Ceil(y,x) | y[i] = 正の無限方向に切り上げ(x[i]) | 複素数は実数部と虚数部に適用されます。 |
y = _VML.Trunc(y,x) | y[i] = ゼロ方向の切り上げ(切り捨て)(x[i]) | 複素数は実数部と虚数部に適用されます。 |
y = _VML.Round(y,x) | y[i] = 最も近い整数に切り上げ(切り捨て)(x[i]) | 複素数は実数部と虚数部に適用されます。 |
y = _VML.Frac(y,x) | y[i] = 整数部分の削除(x[i])、(y[i]=x[i]-⎿x[i]⏌ x[i]≧0の場合、y[i]=x[i]-⎾x[i]⏋ x[i]<0の場合) | 複素数は実数部と虚数部に適用されます。 |
y = _VML.Convolut(y,x1,x2) | x1 と x2 の線形畳み込み計算 | |
y = _VML.Correlat(y,x1,x2) | x1 と x2 の線形相関計算 | |